0%

我是这样理解 --SVM,不需要繁杂公式的那种!(附代码)

  1. 讲讲 SVM

1.1 一个关于 SVM 的童话故事

支持向量机(Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍。关于 SVM,流传着一个关于天使与魔鬼的故事。

传说魔鬼和天使玩了一个游戏,魔鬼在桌上放了两种颜色的球。魔鬼让天使用一根木棍将它们分开。这对天使来说,似乎太容易了。天使不假思索地一摆,便完成了任务。魔鬼又加入了更多的球。随着球的增多,似乎有的球不能再被原来的木棍正确分开,如下图所示。

SVM 实际上是在为天使找到木棒的最佳放置位置,使得两边的球都离分隔它们的木棒足够远。依照 SVM 为天使选择的木棒位置,魔鬼即使按刚才的方式继续加入新球,木棒也能很好地将两类不同的球分开。

看到天使已经很好地解决了用木棒线性分球的问题,魔鬼又给了天使一个新的挑战,如下图所示。

按照这种球的摆法,世界上貌似没有一根木棒可以将它们 完美分开。但天使毕竟有法力,他一拍桌子,便让这些球飞到了空中,然后凭借 念力抓起一张纸片,插在了两类球的中间。从魔鬼的角度看这些 球,则像是被一条曲线完美的切开了。

后来,“无聊” 的科学家们把这些球称为 “数据”,把木棍称为 “分类面”,找到最 大间隔的木棒位置的过程称为 “优化”,拍桌子让球飞到空中的念力叫 “核映射”,在 空中分隔球的纸片称为 “分类超平面”。这便是 SVM 的童话故事。

1.2 理解 SVM:第一层

支持向量机,因其英文名为 support vector machine,故一般简称 SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

线性分类器: 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。如果用 x 表示数据点,用 y 表示类别(y 可以取 1 或者 0,分别代表两个不同的类),一个线性分类器的学习目标便是要在 n 维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT 中的 T 代表转置):

这里可以查看我之前的逻辑回归章节回顾:点击打开

这个超平面可以用分类函数 %3Dw%5ETx%2Bb>) 表示,当 f(x) 等于 0 的时候,x 便是位于超平面上的点,而 f(x) 大于 0 的点对应 y=1 的数据点,f(x) 小于 0 的点对应 y=-1 的点,如下图所示:

1.2.1 函数间隔与几何间隔

在超平面 wx+b=0 确定的情况下,|w_x+b | 能够表示点 x 到距离超平面的远近,而通过观察 w_x+b 的符号与类标记 y 的符号是否一致可判断分类是否正确,所以,可以用 (y(w*x+b)) 的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。

函数间隔公式:

而超平面 (w,b) 关于数据集 T 中所有样本点 (xi,yi) 的函数间隔最小值(其中,x 是特征,y 是结果标签,i 表示第 i 个样本),便为超平面 (w, b) 关于训练数据集 T 的函数间隔:

>)

但这样定义的函数间隔有问题,即如果成比例的改变 w 和 b(如将它们改成 2w 和 2b),则函数间隔的值 f(x) 却变成了原来的 2 倍(虽然此时超平面没有改变),所以只有函数间隔还远远不够。

几何间隔

事实上,我们可以对法向量 w 加些约束条件,从而引出真正定义点到超平面的距离 — 几何间隔(geometrical margin)的概念。假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量,为样本 x 到超平面的距离,如下图所示:

这里我直接给出几何间隔的公式,详细推到请查看博文:点击进入

几何间隔:

从上述函数间隔和几何间隔的定义可以看出:几何间隔就是函数间隔除以 ||w||,而且函数间隔 y(wx+b) = yf(x) 实际上就是 | f(x)|,只是人为定义的一个间隔度量,而几何间隔 | f(x)|/||w|| 才是直观上的点到超平面的距离。

1.2.2 最大间隔分类器的定义

对一个数据点进行分类,当超平面离数据点的 “间隔” 越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个 “间隔” 值。这个间隔就是下图中的 Gap 的一半。

通过由前面的分析可知:函数间隔不适合用来最大化间隔值,因为在超平面固定以后,可以等比例地缩放 w 的长度和 b 的值,这样可以使得 %3Dw%5ETx%2Bb>) 的值任意大,亦即函数间隔可以在超平面保持不变的情况下被取得任意大。但几何间隔因为除上了,使得在缩放 w 和 b 的时候几何间隔的值是不会改变的,它只随着超平面的变动而变动,因此,这是更加合适的一个间隔。换言之,这里要找的最大间隔分类超平面中的 “间隔” 指的是几何间隔。

如下图所示,中间的实线便是寻找到的最优超平面(Optimal Hyper Plane),其到两条虚线边界的距离相等,这个距离便是几何间隔,两条虚线间隔边界之间的距离等于 2 倍几何间隔,而虚线间隔边界上的点则是支持向量。由于这些支持向量刚好在虚线间隔边界上,所以它们满足%3D1>),对于所有不是支持向量的点,则显然有%3E1>)。

OK,到此为止,算是了解到了 SVM 的第一层,对于那些只关心怎么用 SVM 的朋友便已足够,不必再更进一层深究其更深的原理。

1.2.3 最大间隔损失函数 Hinge loss

SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 (empirical risk minimization,ERM),即构建假设函数(Hypothesis)为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法。SVM 采用的就是 Hinge Loss,用于 “最大间隔(max-margin)” 分类。

j-(f(x_i%2CW)%7By_i%7D-%5Cbigtriangleup))>)

  • 对于训练集中的第 i 个数据 xi
  • 在 W 下会有一个得分结果向量 f(xi,W)
  • 第 j 类的得分为我们记作 f(xi,W)j

要理解这个公式,首先先看下面这张图片:

  1. 在生活中我们都会认为没有威胁的才是最好的,比如拿成绩来说,自己考了第一名 99 分,而第二名紧随其后 98 分,那么就会有不安全的感觉,就会认为那家伙随时都有可能超过我。如果第二名是 85 分,那就会感觉安全多了,第二名需要花费很大的力气才能赶上自己。拿这个例子套到上面这幅图也是一样的。
  2. 上面这幅图 delta 左边的红点是一个安全警戒线,什么意思呢?也就是说预测错误得分超过这个安全警戒线就会得到一个惩罚权重,让这个预测错误值退回到安全警戒线以外,这样才能够保证预测正确的结果具有唯一性。
  3. 对应到公式中,_j>) 就是错误分类的得分。后面一项就是 正确得分 - delta = 安全警戒线值,两项的差代表的就是惩罚权重,越接近正确得分,权重越大。当错误得分在警戒线以外时,两项相减得到负数,那么损失函数的最大值是 0,也就是没有损失。
  4. 一直往复循环训练数据,直到最小化损失函数为止,也就找到了分类超平面。

1.3 深入 SVM:第二层

1.3.1 从线性可分到线性不可分

接着考虑之前得到的目标函数 (令函数间隔 = 1):

%5Cge1%2Ci%3D1%2C…%2Cn>)

转换为对偶问题,解释一下什么是对偶问题,对偶问题是实质相同但从不同角度提出不同提法的一对问题。

由于求 的最大值相当于求 的最小值,所以上述目标函数等价于(w 由分母变成分子,从而也有原来的 max 问题变为 min 问题,很明显,两者问题等价):

%5Cge1%2Ci%3D1%2C…%2Cn>)

因为现在的目标函数是二次的,约束条件是线性的,所以它是一个凸二次规划问题。这个问题可以用现成的 QP (Quadratic Programming) 优化包进行求解。一言以蔽之:在一定的约束条件下,目标最优,损失最小。

此外,由于这个问题的特殊结构,还可以通过拉格朗日对偶性(Lagrange Duality)变换到对偶变量 (dual variable) 的优化问题,即通过求解与原问题等价的对偶问题(dual problem)得到原始问题的最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题。

详细过程请参考文章末尾给出的参考链接。

1.3.2 核函数 Kernel

事实上,大部分时候数据并不是线性可分的,这个时候满足这样条件的超平面就根本不存在。在上文中,我们已经了解到了 SVM 处理线性可分的情况,那对于非线性的数据 SVM 咋处理呢?对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。

具体来说, 在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维特征空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开。 如图所示,一堆数据在二维空间无法划分,从而映射到三维空间里划分:

通常人们会从一些常用的核函数中选择(根据问题和数据的不同,选择不同的参数,实际上就是得到了不同的核函数),例如:多项式核、高斯核、线性核。

读者可能还是没明白核函数到底是个什么东西?我再简要概括下,即以下三点:

  1. 实际中,我们会经常遇到线性不可分的样例,此时,我们的常用做法是把样例特征映射到高维空间中去 (映射到高维空间后,相关特征便被分开了,也就达到了分类的目的);
  2. 但进一步,如果凡是遇到线性不可分的样例,一律映射到高维空间,那么这个维度大小是会高到可怕的。那咋办呢?
  3. 此时,核函数就隆重登场了,核函数的价值在于它虽然也是将特征进行从低维到高维的转换,但核函数绝就绝在它事先在低维上进行计算,而将实质上的分类效果表现在了高维上,避免了直接在高维空间中的复杂计算。

如果数据中出现了离群点 outliers,那么就可以使用松弛变量来解决。

1.3.3 总结

不准确的说,SVM 它本质上即是一个分类方法,用 w^T+b 定义分类函数,于是求 w、b,为寻最大间隔,引出 1/2||w||^2,继而引入拉格朗日因子,化为对拉格朗日乘子 a 的求解(求解过程中会涉及到一系列最优化或凸二次规划等问题),如此,求 w.b 与求 a 等价,而 a 的求解可以用一种快速学习算法 SMO,至于核函数,是为处理非线性情况,若直接映射到高维计算恐维度爆炸,故在低维计算,等效高维表现。

OK,理解到这第二层,已经能满足绝大部分人一窥 SVM 原理的好奇心,针对于面试来说已经足够了。

1.4 SVM 的应用

SVM 在很多诸如文本分类,图像分类,生物序列分析和生物数据挖掘,手写字符识别等领域有很多的应用,但或许你并没强烈的意识到,SVM 可以成功应用的领域远远超出现在已经在开发应用了的领域。

  1. SVM 的一些问题

  1. 是否存在一组参数使 SVM 训练误差为 0?

    答:存在

  2. 训练误差为 0 的 SVM 分类器一定存在吗?

    答:一定存在

  3. 加入松弛变量的 SVM 的训练误差可以为 0 吗?

    答:使用 SMO 算法训练的线性分类器并不一定能得到训练误差为 0 的模型。这是由 于我们的优化目标改变了,并不再是使训练误差最小。

  4. 带核的 SVM 为什么能分类非线性问题?

    答:核函数的本质是两个函数的內积,通过核函数将其隐射到高维空间,在高维空间非线性问题转化为线性问题, SVM 得到超平面是高维空间的线性分类平面。其分类结果也视为低维空间的非线性分类结果, 因而带核的 SVM 就能分类非线性问题。

  5. 如何选择核函数?

    • 如果特征的数量大到和样本数量差不多,则选用 LR 或者线性核的 SVM;
    • 如果特征的数量小,样本的数量正常,则选用 SVM + 高斯核函数;
    • 如果特征的数量小,而样本的数量很大,则需要手工添加一些特征从而变成第一种情况。
  6. LR 和 SVM 的联系与区别


3.1 相同点

  • 都是线性分类器。本质上都是求一个最佳分类超平面。
  • 都是监督学习算法。
  • 都是判别模型。判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类。常见的判别模型有:KNN、SVM、LR,常见的生成模型有:朴素贝叶斯,隐马尔可夫模型。

3.2 不同点

  • LR 是参数模型,svm 是非参数模型,linear 和 rbf 则是针对数据线性可分和不可分的区别;
  • 从目标函数来看,区别在于逻辑回归采用的是 logistical loss,SVM 采用的是 hinge loss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。
  • SVM 的处理方法是只考虑 support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。
  • 逻辑回归相对来说模型更简单,好理解,特别是大规模线性分类时比较方便。而 SVM 的理解和优化相对来说复杂一些,SVM 转化为对偶问题后, 分类只需要计算与少数几个支持向量的距离, 这个在进行复杂核函数计算时优势很明显, 能够大大简化模型和计算。
  • logic 能做的 svm 能做,但可能在准确率上有问题,svm 能做的 logic 有的做不了。
  1. 线性分类器与非线性分类器的区别以及优劣

线性和非线性是针对模型参数和输入特征来讲的;比如输入 x,模型 y=ax+ax^2 那么就是非线性模型,如果输入是 x 和 X^2 则模型是线性的。

  • 线性分类器可解释性好,计算复杂度较低,不足之处是模型的拟合效果相对弱些。

    LR, 贝叶斯分类,单层感知机、线性回归

  • 非线性分类器效果拟合能力较强,不足之处是数据量不足容易过拟合、计算复杂度高、可解释性不好。

    决策树、RF、GBDT、多层感知机

SVM 两种都有(看线性核还是高斯核)

  1. 代码实现

新闻分类 GitHub:点击进入

机器学习通俗易懂系列文章

  1. 参考文献

支持向量机通俗导论(理解 SVM 的三层境界)

作者:@mantchs

GitHub:github.com/NLP-LOVE/ML…

欢迎大家加入讨论!共同完善此项目!群号:【541954936】