0%

K-Means(K 均值)、GMM(高斯混合模型),通俗易懂,先收藏了!

  1. 聚类算法都是无监督学习吗?

什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和 / 或特征,而不同组中的数据点应该具有高度不同的属性和 / 或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。

常用的算法包括 K-MEANS、高斯混合模型(Gaussian Mixed Model,GMM)、自组织映射神经网络(Self-Organizing Map,SOM)

  1. k-means(k 均值) 算法

2.1 算法过程

K - 均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。

K - 均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为:

  • 首先选择 𝐾 个随机的点,称为聚类中心(cluster centroids);
  • 对于数据集中的每一个数据,按照距离 𝐾 个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。
  • 计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。
  • 重复步骤,直至中心点不再变化。

来表示聚类中心,用 𝑐(1),𝑐(2),…,𝑐(𝑚) 来存储与第 𝑖 个实例数据最近的聚类中心的索引,K - 均值算法的伪代码如下:

1
2
3
4
5
6
7
Repeat {
for i = 1 to m
c(i) := index (form 1 to K) of cluster centroid closest to x(i)
for k = 1 to K
μk := average (mean) of points assigned to cluster k
}
复制代码

算法分为两个步骤,第一个 for 循环是赋值步骤,即:对于每一个样例 𝑖,计算其应该属于的类。第二个 for 循环是聚类中心的移动,即:对于每一个类 𝐾,重新计算该类的质心。

K - 均值算法也可以很便利地用于将数据分为许多不同组,即使在没有非常明显区分的组群的情况下也可以。下图所示的数据集包含身高和体重两项特征构成的,利用 K - 均值算法将数据分为三类,用于帮助确定将要生产的 T - 恤衫的三种尺寸。

2.2 损失函数

K - 均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K - 均值的代价函数(又称畸变函数 Distortion function)为:

%7D%2Cc%5E%7B(2)%7D%2C…%2Cc%5E%7B(m)%7D%2Cu1%2C…%2Cu_k)%3D%5Cfrac%7B1%7D%7Bm%7D%5Csum%7Bi%3D1%7D%5E%7Bm%7D%7C%7CX%5E%7B(1)%7D-u_%7Bc%5E%7B(i)%7D%7D%7C%7C%5E2>)

其中 %7D%7D>) 代表与 %7D>) 最近的聚类中心点。 我们的的优化目标便是找出使得代价函数最小的 %7D%2Cc%5E%7B(2)%7D%2C…%2Cc%5E%7B(m)%7D>) 和

2.3 k 值的选择

在运行 K - 均值算法的之前,我们首先要随机初始化所有的聚类中心点,下面介绍怎样做:

  1. 我们应该选择 𝐾 < 𝑚,即聚类中心点的个数要小于所有训练集实例的数量。
  2. 随机选择 𝐾 个训练实例,然后令 𝐾 个聚类中心分别与这 𝐾 个训练实例相等 K - 均值的一个问题在于,它有可能会停留在一个局部最小值处,而这取决于初始化的情况。

为了解决这个问题,我们通常需要多次运行 K - 均值算法,每一次都重新进行随机初始化,最后再比较多次运行 K - 均值的结果,选择代价函数最小的结果。这种方法在 𝐾 较小的时候(2—10)还是可行的,但是如果 𝐾 较大,这么做也可能不会有明显地改善。

没有所谓最好的选择聚类数的方法,通常是需要根据不同的问题,人工进行选择的。选择的时候思考我们运用 K - 均值算法聚类的动机是什么。有一个可能会谈及的方法叫作 “肘部法则”。关 于 “肘部法则”,我们所需要做的是改变 𝐾 值,也就是聚类类别数目的总数。我们用一个聚类来运行 K 均值聚类方法。这就意味着,所有的数据都会分到一个聚类里,然后计算成本函数或者计算畸变函数 𝐽。𝐾 代表聚类数字。

我们可能会得到一条类似于这样的曲线。像一个人的肘部。这就是 “肘部法则” 所做的,让我们来看这样一个图,看起来就好像有一个很清楚的肘在那儿。你会发现这种模式,它的畸变值会迅速下降,从 1 到 2,从 2 到 3 之后,你会在 3 的时候达到一个肘点。在此之后,畸变值就下降的非常慢,看起来就像使用 3 个聚类来进行聚类是正确的, 这是因为那个点是曲线的肘点,畸变值下降得很快,𝐾 = 3 之后就下降得很慢,那么我们就选 𝐾 = 3。 当你应用 “肘部法则” 的时候,如果你得到了一个像上面这样的图,那么这将是一种用来选择聚类个数的合理方法。

2.4 KNN 与 K-means 区别?

K 最近邻 (k-Nearest Neighbor,KNN) 分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

KNN K-Means

| 1.KNN 是分类算法

  1. 属于监督学习
  2. 训练数据集是带 label 的数据 | 1.K-Means 是聚类算法
  3. 属于非监督学习
  4. 训练数据集是无 label 的数据,是杂乱无章的,经过聚类后变得有序,先无序,后有序。 |
    | 没有明显的前期训练过程,属于 memory based learning | 有明显的前期训练过程 |
    | K 的含义:一个样本 x,对它进行分类,就从训练数据集中,在 x 附近找离它最近的 K 个数据点,这 K 个数据点,类别 c 占的个数最多,就把 x 的 label 设为 c。 | K 的含义:K 是人工固定好的数字,假设数据集合可以分为 K 个蔟,那么就利用训练数据来训练出这 K 个分类。 |

相似点

都包含这样的过程,给定一个点,在数据集中找离它最近的点。即二者都用到了 NN(Nears Neighbor) 算法思想。

2.5 K-Means 优缺点及改进

k-means:在大数据的条件下,会耗费大量的时间和内存。 优化 k-means 的建议:

  1. 减少聚类的数目 K。因为,每个样本都要跟类中心计算距离。

  2. 减少样本的特征维度。比如说,通过 PCA 等进行降维。

  3. 考察其他的聚类算法,通过选取 toy 数据,去测试不同聚类算法的性能。

  4. hadoop 集群,K-means 算法是很容易进行并行计算的。

  5. 算法可能找到局部最优的聚类,而不是全局最优的聚类。使用改进的二分 k-means 算法。

    二分 k-means 算法:首先将整个数据集看成一个簇,然后进行一次 k-means(k=2)算法将该簇一分为二,并计算每个簇的误差平方和,选择平方和最大的簇迭代上述过程再次一分为二,直至簇数达到用户指定的 k 为止,此时可以达到的全局最优。

3) 高斯混合模型 (GMM)


3.1 GMM 的思想

高斯混合模型(Gaussian Mixed Model,GMM)也是一种常见的聚类算法,与 K 均值算法类似,同样使用了 EM 算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布(又叫正态分布)的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。

第一张图是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图 中所示的椭圆即为高斯分布的二倍标准差所对应的椭圆。直观来说,图中的数据 明显分为两簇,因此只用一个高斯分布来拟和是不太合理的,需要推广到用多个 高斯分布的叠加来对数据进行拟合。第二张图是用两个高斯分布的叠加来拟合得到的结果。 这就引出了高斯混合模型,即用多个高斯分布函数的线形组合来对数据分布进行拟合。 理论上,高斯混合模型可以拟合出任意类型的分布。

高斯混合模型的核心思想是,假设数据可以看作从多个高斯分布中生成出来 的。在该假设下,每个单独的分模型都是标准高斯模型,其均值 和方差 是待估计的参数。此外,每个分模型都还有一个参数 ,可以理解为权重或生成数据的概 率。高斯混合模型的公式为:

%3D%5Csum_%7Bi%3D1%7D%5E%7Bk%7D%5Cpi_iN(x%7Cu_i%2C%5Csum_i)>)

通常我们并不能直接得到高斯混合模型的参数,而是观察到了一系列 数据点,给出一个类别的数量 K 后,希望求得最佳的 K 个高斯分模型。因此,高斯 混合模型的计算,便成了最佳的均值 μ,方差 Σ、权重 π 的寻找,这类问题通常通过 最大似然估计来求解。遗憾的是,此问题中直接使用最大似然估计,得到的是一 个复杂的非凸函数,目标函数是和的对数,难以展开和对其求偏导。

在这种情况下,可以用 EM 算法。 EM 算法是在最大化目标函数时,先固定一个变量使整体函数变为凸优化函数,求导得到最值,然后利用最优参数更新被固定的变量,进入下一个循环。具体到高 斯混合模型的求解,EM 算法的迭代过程如下。

首先,初始随机选择各参数的值。然后,重复下述两步,直到收敛。

  • E 步骤。根据当前的参数,计算每个点由某个分模型生成的概率。
  • M 步骤。使用 E 步骤估计出的概率,来改进每个分模型的均值,方差和权重。

高斯混合模型是一个生成式模型。可以这样理解数据的生成过程,假设一个最简单的情况,即只有两个一维标准高斯分布的分模型 N(0,1) 和 N(5,1),其权重分别为 0.7 和 0.3。那么,在生成第一个数据点时,先按照权重的比例,随机选择一个分布,比如选择第一个高斯分布,接着从 N(0,1) 中生成一个点,如 −0.5,便是第一个数据点。在生成第二个数据点时,随机选择到第二个高斯分布 N(5,1),生成了第二个点 4.7。如此循环执行,便生成出了所有的数据点。

也就是说,我们并不知道最佳的 K 个高斯分布的各自 3 个参数,也不知道每个 数据点究竟是哪个高斯分布生成的。所以每次循环时,先固定当前的高斯分布不 变,获得每个数据点由各个高斯分布生成的概率。然后固定该生成概率不变,根据数据点和生成概率,获得一个组更佳的高斯分布。循环往复,直到参数的不再变化,或者变化非常小时,便得到了比较合理的一组高斯分布。

3.2 GMM 与 K-Means 相比

高斯混合模型与 K 均值算法的相同点是:

  • 它们都是可用于聚类的算法;
  • 都需要 指定 K 值;
  • 都是使用 EM 算法来求解;
  • 都往往只能收敛于局部最优。

而它相比于 K 均值算法的优点是,可以给出一个样本属于某类的概率是多少;不仅仅可以用于聚类,还可以用于概率密度的估计;并且可以用于生成新的样本点。

  1. 聚类算法如何评估

由于数据以及需求的多样性,没有一种算法能够适用于所有的数据类型、数 据簇或应用场景,似乎每种情况都可能需要一种不同的评估方法或度量标准。例 如,K 均值聚类可以用误差平方和来评估,但是基于密度的数据簇可能不是球形, 误差平方和则会失效。在许多情况下,判断聚类算法结果的好坏强烈依赖于主观 解释。尽管如此,聚类算法的评估还是必需的,它是聚类分析中十分重要的部分之一。

聚类评估的任务是估计在数据集上进行聚类的可行性,以及聚类方法产生结 果的质量。这一过程又分为三个子任务。

  1. 估计聚类趋势。

    这一步骤是检测数据分布中是否存在非随机的簇结构。如果数据是基本随机 的,那么聚类的结果也是毫无意义的。我们可以观察聚类误差是否随聚类类别数 量的增加而单调变化,如果数据是基本随机的,即不存在非随机簇结构,那么聚 类误差随聚类类别数量增加而变化的幅度应该较不显著,并且也找不到一个合适 的 K 对应数据的真实簇数。

  2. 判定数据簇数。

    确定聚类趋势之后,我们需要找到与真实数据分布最为吻合的簇数,据此判定聚类结果的质量。数据簇数的判定方法有很多,例如手肘法和 Gap Statistic 方 法。需要说明的是,用于评估的最佳数据簇数可能与程序输出的簇数是不同的。 例如,有些聚类算法可以自动地确定数据的簇数,但可能与我们通过其他方法确 定的最优数据簇数有所差别。

  3. 测定聚类质量。

    在无监督的情况下,我们可以通过考察簇的分离情况和簇的紧 凑情况来评估聚类的效果。定义评估指标可以展现面试者实际解决和分析问题的 能力。事实上测量指标可以有很多种,以下列出了几种常用的度量指标,更多的 指标可以阅读相关文献。

    轮廓系数、均方根标准偏差、R 方(R-Square)、改进的 HubertΓ 统计。

5) 代码实现


高斯混合模型代码

K-Means 代码

机器学习通俗易懂系列文章

作者:@mantchs

GitHub:github.com/NLP-LOVE/ML…

欢迎大家加入讨论!共同完善此项目!群号:【541954936】